Carbon nanotube photovoltaics can wring twice the charge from light.
By Katherine Bourzac
Today's solar cells lose much of the energy in light to heat. Now researchers at Cornell University have made a photovoltaic cell out of a single carbon nanotube that can take advantage of more of the energy in light than conventional photovoltaics. The tiny carbon tubes might eventually be used to make more-efficient next-generation solar cells.
"The main limiting factor in a solar cell is that when you absorb a high-energy photon, you lose energy to heat, and there's no way to recover it," says Matthew Beard
Researchers led by Paul McEuen
There's evidence that another class of nanomaterials called quantum dots
McEuen cautions that his work on carbon nanotube photovoltaics is fundamental. "We've made the world's smallest solar cell, and that's not necessarily a good thing," he says. To take advantage of the nanotubes' superefficiency, researchers will first have to develop methods for making large arrays of the diodes. "We're not at a point where we can scale up carbon nanotubes, but that should be the ultimate goal," says Lee, who developed the first nanotube diodes while a researcher at General Electric.
It's not clear why the nanotube photovoltaic cell offers this two-for-one energy conversion. "It's mysterious to us," says McEuen. However, the most likely reason is that while conventional solar materials have only one energy level for electrons to move through, carbon nanotubes have several. And two of them just happen to be very well matched: one of the energy levels, or bandgaps, is twice as high as the other. "We may have gotten lucky, and it has very little to do with the fact that it's a carbon nanotube," says McEuen. This means, McEuen hopes, that even if it proves too challenging to make arrays of nanotube solar cells, materials scientists can look for pairs of materials that have these kinds of matched bandgaps, and layer them to make solar cells that do with two materials what the single nanotube cells can do. "Maybe the answer won't be in nanotubes, but in another pair of materials," McEuen says.
Copyright Technology Review 2009.
No comments:
Post a Comment